Технологии и медицина: Самые взрывные медицинские технологии последнего времени — Будущее на vc.ru
Самые взрывные медицинские технологии последнего времени — Будущее на vc.ru
За последние годы медицина не просто шагнула далеко вперед, а стала сферой удивительных открытий. Прошлый год показал, что инновации плотно вошли в нашу жизнь. Развитие и внедрение современных технологий затронуло многие сферы, начиная от онкологии и хирургии, заканчивая стремительной разработкой вакцин от COVID-19.
13 278 просмотров
Телемедицина и мобильная медицина
Телемедицина — одна из самых быстрорастущих медицинских услуг в мире. В ее основе лежит предоставление консультаций, диагностики, профилактики и лечения при помощи компьютерных и телекоммуникационных технологий. Иными словами, — это медицина “на расстоянии”. Мобильная медицина, или m-Health, — это комплекс мероприятий в области здравоохранения, сервисы, программы и услуги с использованием смартфона или планшета, а также беспроводных технологий.
Сами по себе эти технологии не являются новинками. Однако именно коронавирус дал мощный толчок к развитию телемедицины и мобильной медицины. Здесь произошел настоящий бум. Люди, находящиеся в период острого карантина и режима самоизоляции дома, нуждались в своевременном и эффективном оказании медицинской помощи. И если в 2016 году только 11,2% докторов США работали в сферах, где используется телемедицина, то уже через два месяца после коронавируса только 9% лечащих врачей в Америке работали в сферах, не использующих телемедицину.
В России же в прошлом году, по данным «Ингосстрах», количество обращений за онлайн-консультациями врачей выросло в 64 раза по сравнению с 2019 годом. При этом, по заявлениям представителей отечественной медицины, телемедицина может составить серьезную конкуренцию традиционным приемам в оффлайн-режиме. Даже после отмены строгих карантинных мер, все еще сохраняется неблагоприятная эпидемиологическая ситуация, в которой забота о своем здоровье — ключевой фактор жизни человека. И когда коронавирус удастся полностью взять под контроль, и мы сможем вернуться к привычной жизни, телемедицина останется не менее востребованной.
На территории России аспекты о телемедицине регулируются законом от 2018 г. Согласно этому документу, технологии телемедицины можно применять как при оказании скорой, так и первичной медико-санитарной помощи. Наряду с этим возможно собирать консилиумы врачей и наблюдать за здоровьем пациентов на основе их анамнеза.
Крупнейшие российские компании «включились» в современные технологические решения, внедряя различные сервисы и приложения. Среди них «СберЗдоровье», «Яндекс.Здоровье», «Ренессанс здоровье» и «ДокторРядом». Все они предоставляют возможность оперативно получить консультацию врача, не выходя из дома.
Если рассматривать зарубежный рынок, то здесь давно известны американские компании Amwell и Teladoc. В основе работы первой — телеконференции пациентов с врачами по защищенным каналам связи. Вторая же использует видеоконференции и телефонные звонки. Впрочем, США по-прежнему остается лидером мировой индустрии рынка телемедицинских услуг. Сама же сфера продолжит расти и в постпандемийный период. По данным Fortune Business Insight, ее среднегодовой темп роста составит 23,5%, а к 2026 г. объем мирового рынка телемедицины достигнет 185,66 млрд. долл. США.
Мобильная медицина также вышла на передовую в период глобальной пандемии коронавируса. В ее основе лежит использование мобильного приложения на смартфоне и носимого устройства, которые помогают отследить данные о здоровье человека или осуществить самостоятельный мониторинг самочувствия. Так, биохакинг-платформа bioniq, основанная в Лондоне Вадимом Федотовым, в апреле этого года уже запустила первое на российском рынке приложение для iOS, которое помогает пользователю отслеживать и управлять состоянием своего здоровья. В дальнейшем человек может наблюдать динамику каждого конкретного показателя, проходя регулярные медицинские обследования.
Роботизированная техника
Применение роботов в медицинской практике не только эффективно, но и безопасно в эпоху COVID-19. На сегодняшний день роботизированная техника используется не только в хирургии, но и в системах поддержки работников здравоохранения и пациентов. К примеру, роботы могут убрать и подготовить палату к приему больного, минуя с ним прямой контакт, быстрее найти необходимый медицинский препарат, помочь передвинуть тяжелое оборудование и т.д.
Пандемия дала мощный толчок развитию инноваций. Уже анонсированы или действуют роботы, которые берут мазки из носа или рта на определение коронавируса, проводят дезинфекцию помещений, осуществляют общую диагностику здоровья и даже доставляют еду пациентам, зараженным этой инфекцией. Стремительное развитие технологий позволяет при помощи роботов проводить как терапию, так и хирургические операции. Один из ярких и самых известных примеров — робот-ассистированная хирургическая система da Vinci. Спектр процедур, которые способен осуществить этот робот, очень обширен: от шунтирования желудка до удаления позвоночной грыжи.
Относительно новой разработкой считается микро-робот для таргетной терапии. Это очень многообещающий вид роботов. Он локально доставляет лекарственные вещества непосредственно к «больному» участку тела, используя механизированные частицы. Особенно интересны их механизмы попадания в «цель», среди которых микро-боты с крошечными спиралевидными «хвостами». Они направляются магнитными полями, прокручиваясь вперед по кровеносным сосудам, и аккуратно продвигаются к опухоли.
Новые технологии в лечении онкологии
Сегодня в лечении раковых заболеваний медицинское сообщество ожидает благоприятного результата от таких относительно новых методов лечения как иммунотерапия и таргетная терапия. Основная проблема в лечении онкологических заболеваний — способность раковых клеток «маскироваться» под здоровые клетки человека. В результате этого иммунной системе сложно их атаковать. Смысл иммунотерапии заключается в том, чтобы с помощью медицинских препаратов «научить» иммунную систему распознавать и атаковать опухолевые клетки. В случаях применения таргетной терапии, рост и распространение онкоклеток блокируются благодаря воздействию исключительно на саму раковую клетку. Поскольку препараты имеют направленное действие, этот вид терапии обладает наименьшими побочными эффектами для организма. Появление на рынке таких лекарственных средств, безусловно, востребовано как со стороны врачей, так и пациентов.
Так, российские ученые недавно представили препарат, использующий векторную наносомальную систему таргетной доставки. Его действующее вещество – одновалентный таллий – доставляется непосредственно к раковой клетке, минуя здоровые ткани человека.
В качестве средства доставки применяется химически модифицированный бактериофаг. Таллий помещают в бактериофаг, после чего он доставляется к раковой клетке и высвобождается в процессе фагоцитоза. Соли таллия не вызывают устойчивости, а их токсическое воздействие происходит только на «больные» клетки. Таким образом, препарат активирует процесс их гибели, блокирует дальнейшее увеличение опухоли и останавливает распространение метастаз. К слову, средство уже прошло доклинические испытания. Разработчик — российская компания «БиоТехнология» планирует внедрить препарат в клиническую практику к 2025 году.
Технологии big data и 5G
Сегодня мы обладаем многими инструментами и данными, не доступными ранее. Использование технологий, основанных на больших массивах данных, позволяет не только быстро оказывать врачебную помощь пациентам и поддерживать их здоровье, но и экономить медицинские расходы, внедрять инновационные разработки, применять более персонализированные подходы к лечению и др.
Cистема 5G также рассчитана на обеспечение минимальной задержки передачи информации. Так, в 2019 году компании Huawei и China Mobile предоставили возможность одной из больниц в Китае провести первую в мире удаленную операцию на головном мозге.
Искусственный интеллект
Сегодня нейросети используются везде. Медицина — не исключение. Искусственный интеллект может как распознавать заболевания на основе сбора данных о пациенте и его истории болезней, так и оперативно создавать лекарственные средства. Медицинские решения на основе ИИ пользуются большой популярностью во всем мире.
К примеру, американская FDNA создает технологии фенотипирования на основе искусственного интеллекта. Система распознает лица пациентов и с невероятной точностью может определить более восьми тысяч заболеваний и даже редких генетических нарушений. А специалисты биотехнологической компании Insilico Medicine с помощью ИИ разработали лекарство от болезни легких.
Опять же, КВИ подтолкнула медицинское сообщество изучать и использовать возможности нейросетей для прогнозов возможных вспышек эпидемий. Так, разработка Искусственного интеллекта в медицинской эпидемиологии (AIME) способна прогнозировать появление вспышек лихорадки денге с точностью до трех месяцев и определять их гео-положение с точностью до 400 метров.
Виртуальная и дополненная реальности
Технологии VR и AR активно применяются в хирургии, офтальмологии, психологии и психиатрии, а также помогают в обучении будущих врачей и в медсестринском деле. Инновации дополненной реальности в диагностике возможны благодаря специальным AR-очкам Microsoft Hololens. Доктор надевает их и видит 3D-реконструкцию на теле человека, фактически обладая тем самым рентгеновским зрением. 3D-модель вкупе со специальным программным обеспечением отображает необходимые диагностические сведения, а врач в реальном времени осматривает пациента.
VRability — первый российский VR 360 проект, мотивирующий людей с инвалидностью быть более активными в реальной жизни. Команда создает сферические ролики и фильмы, которые пользователь может увидеть в VR-очках. Специалисты сотрудничают с общественными организациями и фондами, помогая людям испытать тот опыт, который для них недоступен ввиду физических ограничений или неподходящих условий.
7 медицинских технологий, которые скоро придут в российские больницы
Фаина Филина советник генерального директора Международного медицинского кластера 25 июня 2018
Инновации меняют медицину — уже сегодня существуют особо точные роботы-хирурги, диагностическое оборудование на основе искусственного интеллекта, «умные» трекеры, передающие врачам информацию о здоровье пациентов, и т.д. Когда-нибудь все эти технологии станут привычными и будут использоваться повсеместно, но пока они — прерогатива лишь научных лабораторий. Фаина Филина — советник генерального директора Международного медицинского кластера — написала колонку для «Хайтек», где разобралась в основных трендах медтеха и выяснила, на какой стадии находится их применение в России.
Читайте «Хайтек» в
Роботы-пациенты для проведения тренировочных операций
Медицина, как часто говорят сами врачи, это ремесло. Для того, чтобы быть хорошим доктором, нужно: «набить руку», получить опыт, работать с потоком пациентов, в том числе по таким случаям, как преждевременные роды или операции на сердце. Чем сложнее клинический опыт врача, тем эффективнее он будет лечить. Чтобы овладеть сложной хирургической технологией, нужно пройти десятки операций в качестве ассистента. Но есть и другой вариант — тренировка на роботизированных пациентах, цена ошибки на которых — нулевая
Современные технологии предлагают врачам целый набор реалистичных и «умных» роботов для отработки различных навыков. Есть роботы-младенцы и роботы-подростки PediaSIM канадского производства для педиатров, роботы-роженицы для акушеров, американские роботы Code Blue III для отработки навыков реаниматологов — в них запрограммированы инфаркты и инсульты.
Применяются и менее критически «больные» роботы — для тренировки стоматологов, отоларингологов, урологов, гинекологов, и т. д. Общая черта для всех роботов — стопроцентная имитация человеческих органов. Медицинская статистика, включающая специальные исследования и клинические испытания, показывает, что врачи, обучавшиеся на роботах-тренажерах, допускают меньше ошибок при реальных операциях, чем их коллеги, лишенные такой возможности.
Есть свои роботы-пациенты и в России. В Международном медицинском кластере в ИЦ «Сколково» открыт симуляционный центр, где собраны роботы-пациенты по многим важным направлениям. Их можно спасать от инсульта, делать лапароскопические и эндоскопические операции, гастроскопию, урологические и гинекологические вмешательства и т.д. Конечно, имитируется не все анатомическое устройство человеческого организма, а тот или иной орган либо же необходимые функции (дыхание, пульс и др.) — роботы в этом плане очень специализированы. Все роботы в «Сколково» российского производства (компании «Эйдос» из Казани)
Процесс «тренировки» врачей выглядит следующим образом. С помощью специального оборудования врач проводит операцию. Ощущения для рук хирурга очень похожи на реальные, как если бы это был живой человек. Робот реагирует на проведение манипуляций. В компьютере видны все жизненные показатели пациента, ведется наблюдение за ходом операции. По итогам выдается «статистика», что было сделано корректно, а что нет. Обучение на работах рассчитано на различные сроки. В медкластере планируются программы и на несколько дней, и на несколько недель — в зависимости от специализации врача.
Потренировать свои навыки на них в Международном медицинском кластере скоро смогут все российские врачи. Первый пилотный корпус медкластера построен, сдан, и откроет свои двери для пациентов и врачей в сентябре 2018 года
VR-симуляторы для врачей и пациентов
Еще один вариант тренировки врачебных навыков — это VR-тренажеры. VR-технологии больше «заточены» под пациентов. К примеру, VR-решения помогают в реабилитации людей, перенесших инсульт и другие повреждения головного мозга. Пример такого решения — Mindmaze, технология от швейцарских производителей. Она восстанавливает людям координацию движений.
Допустим, у пациента парализована левая рука. В этом случае на экран перед глазами больного проецируется изображение обеих рук, включая неработающую левую. Но в виртуальной реальности она вполне работоспособна. Пациент двигает правой рукой, а вместе с ней, пока что в виртуальности, еще и левой. Мозг постепенно «клюет» на этот обман, восстанавливая изначальный принцип работы тела и заставляя мышцы неработающей руки работать.
Существуют VR-решения для борьбы с фобиями или с фантомной болью. Это актуально для людей, лишившихся конечностей. Виртуальные очки с помощью подсоединенных к телу электродов убеждают мозг, что отсутствующие части тела находятся на месте. Устраняя тем самым страдания людей, которым и так пришлось очень нелегко.
Но есть и VR для врачей: например, VR-тренажеры для пластических хирургов. Они заранее моделируют эффект от хирургического вмешательства, выявляют сложные места, готовят врача к различным сценариям во время операции.
Уже несколько лет успешно применяется австралийская VR-система NurseSim — симулятор виртуальной реальности для медицинских сестер. С помощью этой 3D-программы на экране монитора воссоздаются все основные процедуры, которые выполняют младшие медработники. Стажер измерит виртуальному пациенту давление, сделает ему укол, укроет полотенцем — и все это с имитацией тактильных ощущений. Вплоть до того, что с помощью программы медсестра понимает, достаточно ли верно нажимает на руку пациента для проверки пульса.
«Умные» цифровые больницы
Диджитализация процессов происходит во многих сферах нашей жизни, в том числе в медицине. Больницы скоро станут «умными» и цифровыми. Это произойдет благодаря целому ряду факторов: накопленным big data, решениям, построенным на базе искусственного интеллекта, самообучающимся машинным алгоритмам для медицинского оборудования и инфраструктуры.
Пациентам предложат самые оптимальные пути лечения с минимальным присутствием в больнице и индивидуально подобранными препаратами. Причем врач будет контролировать изменение состояния пациента в онлайн-режиме — о любой опасности ему сообщит специальное оборудование (носимое устройство, трекер с функцией реагирования).
И это не далекое будущее. Это уже сегодняшний день. В Южной Корее работает полностью цифровой госпиталь Bundang, многопрофильный медицинский центр, использующий передовые медицинские технологии и методики лечения самых сложных заболеваний: онкологических, кардиологических и др. Это и хирургические роботы («Да Винчи», «Гамма-нож»), и новейшее оборудование для диагностики. Кроме того, в нем применяются различные решения на базе искусственного интеллекта.
Во-первых, собственная разработка госпиталя — информационная система BestCare с электронным архивом данных, системой передачи биометрических данных, «умными» системами принятия клинических решений и управления ресурсами. Эта система дважды получала награду за «наивысшую степень электронизации» от авторитетной американской ассоциации HIMSS, став единственным в мире медицинским учреждением за пределами США, прошедшим повторную аттестацию (в самих Штатах цифровых клиник достаточно много, среди них — Центральная больница Массачусетса в Бостоне, Стэнфордский госпиталь в Калифорнии, Клиника Кливленда в Огайо и другие). Считается, что у врача с развитием подобных технологий появится больше времени. Он займется решением сложных или творческих задач, повысит эффективность работы отделения, улучшит качество сервиса медицинской помощи, начнет научные разработки, и т.д.
Во-вторых, для пациентов в госпитале есть смарт-кровати («умные» кровати — «Хайтек»), на экране которых пациентам доступны сведения о лечении, анализах. Пациент понимает, что происходит с ним, как его лечат. Даже если рядом нет врача, он может задать любой вопрос онлайн. Есть и различные приятные мелочи, делающие процесс лечения комфортным. Например, смарт-кровать поддерживает необходимые показатели света, температуры в палате