Технологии и медицина: Самые взрывные медицинские технологии последнего времени — Будущее на vc.ru

Содержание

Самые взрывные медицинские технологии последнего времени — Будущее на vc.ru

За последние годы медицина не просто шагнула далеко вперед, а стала сферой удивительных открытий. Прошлый год показал, что инновации плотно вошли в нашу жизнь. Развитие и внедрение современных технологий затронуло многие сферы, начиная от онкологии и хирургии, заканчивая стремительной разработкой вакцин от COVID-19.

13 278 просмотров

Телемедицина и мобильная медицина

Телемедицина — одна из самых быстрорастущих медицинских услуг в мире. В ее основе лежит предоставление консультаций, диагностики, профилактики и лечения при помощи компьютерных и телекоммуникационных технологий. Иными словами, — это медицина “на расстоянии”. Мобильная медицина, или m-Health, — это комплекс мероприятий в области здравоохранения, сервисы, программы и услуги с использованием смартфона или планшета, а также беспроводных технологий.

Сами по себе эти технологии не являются новинками. Однако именно коронавирус дал мощный толчок к развитию телемедицины и мобильной медицины. Здесь произошел настоящий бум. Люди, находящиеся в период острого карантина и режима самоизоляции дома, нуждались в своевременном и эффективном оказании медицинской помощи. И если в 2016 году только 11,2% докторов США работали в сферах, где используется телемедицина, то уже через два месяца после коронавируса только 9% лечащих врачей в Америке работали в сферах, не использующих телемедицину.

В России же в прошлом году, по данным «Ингосстрах», количество обращений за онлайн-консультациями врачей выросло в 64 раза по сравнению с 2019 годом. При этом, по заявлениям представителей отечественной медицины, телемедицина может составить серьезную конкуренцию традиционным приемам в оффлайн-режиме. Даже после отмены строгих карантинных мер, все еще сохраняется неблагоприятная эпидемиологическая ситуация, в которой забота о своем здоровье — ключевой фактор жизни человека. И когда коронавирус удастся полностью взять под контроль, и мы сможем вернуться к привычной жизни, телемедицина останется не менее востребованной.

Люди уже поняли все ее преимущества и удобства: сэкономленные время и деньги на дорогу, а также силы и нервы на очереди, чтобы попасть на прием к врачу или получить медицинскую услугу. И онлайн-медицина также эффективна.

На территории России аспекты о телемедицине регулируются законом от 2018 г. Согласно этому документу, технологии телемедицины можно применять как при оказании скорой, так и первичной медико-санитарной помощи. Наряду с этим возможно собирать консилиумы врачей и наблюдать за здоровьем пациентов на основе их анамнеза.

Крупнейшие российские компании «включились» в современные технологические решения, внедряя различные сервисы и приложения. Среди них «СберЗдоровье», «Яндекс.Здоровье», «Ренессанс здоровье» и «ДокторРядом». Все они предоставляют возможность оперативно получить консультацию врача, не выходя из дома.

Если рассматривать зарубежный рынок, то здесь давно известны американские компании Amwell и Teladoc. В основе работы первой — телеконференции пациентов с врачами по защищенным каналам связи. Вторая же использует видеоконференции и телефонные звонки. Впрочем, США по-прежнему остается лидером мировой индустрии рынка телемедицинских услуг. Сама же сфера продолжит расти и в постпандемийный период. По данным Fortune Business Insight, ее среднегодовой темп роста составит 23,5%, а к 2026 г. объем мирового рынка телемедицины достигнет 185,66 млрд. долл. США.

Мобильная медицина также вышла на передовую в период глобальной пандемии коронавируса. В ее основе лежит использование мобильного приложения на смартфоне и носимого устройства, которые помогают отследить данные о здоровье человека или осуществить самостоятельный мониторинг самочувствия. Так, биохакинг-платформа bioniq, основанная в Лондоне Вадимом Федотовым, в апреле этого года уже запустила первое на российском рынке приложение для iOS, которое помогает пользователю отслеживать и управлять состоянием своего здоровья. В дальнейшем человек может наблюдать динамику каждого конкретного показателя, проходя регулярные медицинские обследования.

В приложении также доступны и рекомендации по питанию.

Роботизированная техника

Применение роботов в медицинской практике не только эффективно, но и безопасно в эпоху COVID-19. На сегодняшний день роботизированная техника используется не только в хирургии, но и в системах поддержки работников здравоохранения и пациентов. К примеру, роботы могут убрать и подготовить палату к приему больного, минуя с ним прямой контакт, быстрее найти необходимый медицинский препарат, помочь передвинуть тяжелое оборудование и т.д.

Пандемия дала мощный толчок развитию инноваций. Уже анонсированы или действуют роботы, которые берут мазки из носа или рта на определение коронавируса, проводят дезинфекцию помещений, осуществляют общую диагностику здоровья и даже доставляют еду пациентам, зараженным этой инфекцией. Стремительное развитие технологий позволяет при помощи роботов проводить как терапию, так и хирургические операции. Один из ярких и самых известных примеров — робот-ассистированная хирургическая система da Vinci. Спектр процедур, которые способен осуществить этот робот, очень обширен: от шунтирования желудка до удаления позвоночной грыжи.

Относительно новой разработкой считается микро-робот для таргетной терапии. Это очень многообещающий вид роботов. Он локально доставляет лекарственные вещества непосредственно к «больному» участку тела, используя механизированные частицы. Особенно интересны их механизмы попадания в «цель», среди которых микро-боты с крошечными спиралевидными «хвостами». Они направляются магнитными полями, прокручиваясь вперед по кровеносным сосудам, и аккуратно продвигаются к опухоли.

Новые технологии в лечении онкологии

Сегодня в лечении раковых заболеваний медицинское сообщество ожидает благоприятного результата от таких относительно новых методов лечения как иммунотерапия и таргетная терапия. Основная проблема в лечении онкологических заболеваний — способность раковых клеток «маскироваться» под здоровые клетки человека. В результате этого иммунной системе сложно их атаковать. Смысл иммунотерапии заключается в том, чтобы с помощью медицинских препаратов «научить» иммунную систему распознавать и атаковать опухолевые клетки. В случаях применения таргетной терапии, рост и распространение онкоклеток блокируются благодаря воздействию исключительно на саму раковую клетку. Поскольку препараты имеют направленное действие, этот вид терапии обладает наименьшими побочными эффектами для организма. Появление на рынке таких лекарственных средств, безусловно, востребовано как со стороны врачей, так и пациентов.

Так, российские ученые недавно представили препарат, использующий векторную наносомальную систему таргетной доставки. Его действующее вещество – одновалентный таллий – доставляется непосредственно к раковой клетке, минуя здоровые ткани человека.

В качестве средства доставки применяется химически модифицированный бактериофаг. Таллий помещают в бактериофаг, после чего он доставляется к раковой клетке и высвобождается в процессе фагоцитоза. Соли таллия не вызывают устойчивости, а их токсическое воздействие происходит только на «больные» клетки. Таким образом, препарат активирует процесс их гибели, блокирует дальнейшее увеличение опухоли и останавливает распространение метастаз. К слову, средство уже прошло доклинические испытания. Разработчик — российская компания «БиоТехнология» планирует внедрить препарат в клиническую практику к 2025 году.

Технологии big data и 5G

Сегодня мы обладаем многими инструментами и данными, не доступными ранее. Использование технологий, основанных на больших массивах данных, позволяет не только быстро оказывать врачебную помощь пациентам и поддерживать их здоровье, но и экономить медицинские расходы, внедрять инновационные разработки, применять более персонализированные подходы к лечению и др.

Cистема 5G также рассчитана на обеспечение минимальной задержки передачи информации. Так, в 2019 году компании Huawei и China Mobile предоставили возможность одной из больниц в Китае провести первую в мире удаленную операцию на головном мозге.

Оперирующий хирург находился на Хайнане, а пациент — в Пекине. Доктор управлял хирургическими инструментами благодаря терминалу для видеоконференций, на котором в режиме онлайн транслировалась операция посредством 5G-соединения.

Искусственный интеллект

Сегодня нейросети используются везде. Медицина — не исключение. Искусственный интеллект может как распознавать заболевания на основе сбора данных о пациенте и его истории болезней, так и оперативно создавать лекарственные средства. Медицинские решения на основе ИИ пользуются большой популярностью во всем мире.

К примеру, американская FDNA создает технологии фенотипирования на основе искусственного интеллекта. Система распознает лица пациентов и с невероятной точностью может определить более восьми тысяч заболеваний и даже редких генетических нарушений. А специалисты биотехнологической компании Insilico Medicine с помощью ИИ разработали лекарство от болезни легких.

Опять же, КВИ подтолкнула медицинское сообщество изучать и использовать возможности нейросетей для прогнозов возможных вспышек эпидемий. Так, разработка Искусственного интеллекта в медицинской эпидемиологии (AIME) способна прогнозировать появление вспышек лихорадки денге с точностью до трех месяцев и определять их гео-положение с точностью до 400 метров.

Виртуальная и дополненная реальности

Технологии VR и AR активно применяются в хирургии, офтальмологии, психологии и психиатрии, а также помогают в обучении будущих врачей и в медсестринском деле. Инновации дополненной реальности в диагностике возможны благодаря специальным AR-очкам Microsoft Hololens. Доктор надевает их и видит 3D-реконструкцию на теле человека, фактически обладая тем самым рентгеновским зрением. 3D-модель вкупе со специальным программным обеспечением отображает необходимые диагностические сведения, а врач в реальном времени осматривает пациента.

VRability — первый российский VR 360 проект, мотивирующий людей с инвалидностью быть более активными в реальной жизни. Команда создает сферические ролики и фильмы, которые пользователь может увидеть в VR-очках. Специалисты сотрудничают с общественными организациями и фондами, помогая людям испытать тот опыт, который для них недоступен ввиду физических ограничений или неподходящих условий.

7 медицинских технологий, которые скоро придут в российские больницы

Фаина Филина советник генерального директора Международного медицинского кластера 25 июня 2018

Инновации меняют медицину — уже сегодня существуют особо точные роботы-хирурги, диагностическое оборудование на основе искусственного интеллекта, «умные» трекеры, передающие врачам информацию о здоровье пациентов, и т.д. Когда-нибудь все эти технологии станут привычными и будут использоваться повсеместно, но пока они — прерогатива лишь научных лабораторий. Фаина Филина — советник генерального директора Международного медицинского кластера — написала колонку для «Хайтек», где разобралась в основных трендах медтеха и выяснила, на какой стадии находится их применение в России.  

Читайте «Хайтек» в

Роботы-пациенты для проведения тренировочных операций

Медицина, как часто говорят сами врачи, это ремесло. Для того, чтобы быть хорошим доктором, нужно: «набить руку», получить опыт, работать с потоком пациентов, в том числе по таким случаям, как преждевременные роды или операции на сердце. Чем сложнее клинический опыт врача, тем эффективнее он будет лечить. Чтобы овладеть сложной хирургической технологией, нужно пройти десятки операций в качестве ассистента. Но есть и другой вариант — тренировка на роботизированных пациентах, цена ошибки на которых — нулевая

Современные технологии предлагают врачам целый набор реалистичных и «умных» роботов для отработки различных навыков. Есть роботы-младенцы и роботы-подростки PediaSIM канадского производства для педиатров, роботы-роженицы для акушеров, американские роботы Code Blue III для отработки навыков реаниматологов — в них запрограммированы инфаркты и инсульты.

Применяются и менее критически «больные» роботы — для тренировки стоматологов, отоларингологов, урологов, гинекологов, и т. д. Общая черта для всех роботов — стопроцентная имитация человеческих органов. Медицинская статистика, включающая специальные исследования и клинические испытания, показывает, что врачи, обучавшиеся на роботах-тренажерах, допускают меньше ошибок при реальных операциях, чем их коллеги, лишенные такой возможности.

Есть свои роботы-пациенты и в России. В Международном медицинском кластере в ИЦ «Сколково» открыт симуляционный центр, где собраны роботы-пациенты по многим важным направлениям. Их можно спасать от инсульта, делать лапароскопические и эндоскопические операции, гастроскопию, урологические и гинекологические вмешательства и т.д. Конечно, имитируется не все анатомическое устройство человеческого организма, а тот или иной орган либо же необходимые функции (дыхание, пульс и др.) — роботы в этом плане очень специализированы. Все роботы в «Сколково» российского производства (компании «Эйдос» из Казани)

Процесс «тренировки» врачей выглядит следующим образом. С помощью специального оборудования врач проводит операцию. Ощущения для рук хирурга очень похожи на реальные, как если бы это был живой человек. Робот реагирует на проведение манипуляций. В компьютере видны все жизненные показатели пациента, ведется наблюдение за ходом операции. По итогам выдается «статистика», что было сделано корректно, а что нет. Обучение на работах рассчитано на различные сроки. В медкластере планируются программы и на несколько дней, и на несколько недель — в зависимости от специализации врача.

Потренировать свои навыки на них в Международном медицинском кластере скоро смогут все российские врачи. Первый пилотный корпус медкластера построен, сдан, и откроет свои двери для пациентов и врачей в сентябре 2018 года

VR-симуляторы для врачей и пациентов

Еще один вариант тренировки врачебных навыков — это VR-тренажеры. VR-технологии больше «заточены» под пациентов. К примеру, VR-решения помогают в реабилитации людей, перенесших инсульт и другие повреждения головного мозга. Пример такого решения — Mindmaze, технология от швейцарских производителей. Она восстанавливает людям координацию движений.

Допустим, у пациента парализована левая рука. В этом случае на экран перед глазами больного проецируется изображение обеих рук, включая неработающую левую. Но в виртуальной реальности она вполне работоспособна. Пациент двигает правой рукой, а вместе с ней, пока что в виртуальности, еще и левой. Мозг постепенно «клюет» на этот обман, восстанавливая изначальный принцип работы тела и заставляя мышцы неработающей руки работать.

Существуют VR-решения для борьбы с фобиями или с фантомной болью. Это актуально для людей, лишившихся конечностей. Виртуальные очки с помощью подсоединенных к телу электродов убеждают мозг, что отсутствующие части тела находятся на месте. Устраняя тем самым страдания людей, которым и так пришлось очень нелегко.

Но есть и VR для врачей: например, VR-тренажеры для пластических хирургов. Они заранее моделируют эффект от хирургического вмешательства, выявляют сложные места, готовят врача к различным сценариям во время операции.

Уже несколько лет успешно применяется австралийская VR-система NurseSim — симулятор виртуальной реальности для медицинских сестер. С помощью этой 3D-программы на экране монитора воссоздаются все основные процедуры, которые выполняют младшие медработники. Стажер измерит виртуальному пациенту давление, сделает ему укол, укроет полотенцем — и все это с имитацией тактильных ощущений. Вплоть до того, что с помощью программы медсестра понимает, достаточно ли верно нажимает на руку пациента для проверки пульса.

«Умные» цифровые больницы

Диджитализация процессов происходит во многих сферах нашей жизни, в том числе в медицине. Больницы скоро станут «умными» и цифровыми. Это произойдет благодаря целому ряду факторов: накопленным big data, решениям, построенным на базе искусственного интеллекта, самообучающимся машинным алгоритмам для медицинского оборудования и инфраструктуры.

Пациентам предложат самые оптимальные пути лечения с минимальным присутствием в больнице и индивидуально подобранными препаратами. Причем врач будет контролировать изменение состояния пациента в онлайн-режиме — о любой опасности ему сообщит специальное оборудование (носимое устройство, трекер с функцией реагирования).

И это не далекое будущее. Это уже сегодняшний день. В Южной Корее работает полностью цифровой госпиталь Bundang, многопрофильный медицинский центр, использующий передовые медицинские технологии и методики лечения самых сложных заболеваний: онкологических, кардиологических и др. Это и хирургические роботы («Да Винчи», «Гамма-нож»), и новейшее оборудование для диагностики. Кроме того, в нем применяются различные решения на базе искусственного интеллекта.

Во-первых, собственная разработка госпиталя — информационная система BestCare с электронным архивом данных, системой передачи биометрических данных, «умными» системами принятия клинических решений и управления ресурсами. Эта система дважды получала награду за «наивысшую степень электронизации» от авторитетной американской ассоциации HIMSS, став единственным в мире медицинским учреждением за пределами США, прошедшим повторную аттестацию (в самих Штатах цифровых клиник достаточно много, среди них — Центральная больница Массачусетса в Бостоне, Стэнфордский госпиталь в Калифорнии, Клиника Кливленда в Огайо и другие). Считается, что у врача с развитием подобных технологий появится больше времени. Он займется решением сложных или творческих задач, повысит эффективность работы отделения, улучшит качество сервиса медицинской помощи, начнет научные разработки, и т.д.

Во-вторых, для пациентов в госпитале есть смарт-кровати («умные» кровати — «Хайтек»), на экране которых пациентам доступны сведения о лечении, анализах. Пациент понимает, что происходит с ним, как его лечат. Даже если рядом нет врача, он может задать любой вопрос онлайн. Есть и различные приятные мелочи, делающие процесс лечения комфортным. Например, смарт-кровать поддерживает необходимые показатели света, температуры в палате

Уже в 2017 году появились и активно развиваются технологии так называемого «генетического редактирования», или, другими словами, генетической терапии. Что это дает людям? Можно брать клетки пациентов и редактировать их. Например, исследователи уже продемонстрировали, что, если взять иммунные клетки у больных с лимфомой, с помощью генного редактирования можно настроить борьбу с опухолью, ввести их обратно пациенту, добиться ремиссии (метод получил название Kymriah).

С помощью генетических скринингов уже давно прогнозируют вероятность различных заболеваний как у эмбрионов, так и у новорожденных. Так, с точностью до 95% можно выявить синдром Дауна. При этом технологии развиваются. Стартап Genomic Prediction занимается предсказанием не только вероятности заболеваний, но и роста, интеллекта ребенка: все это на основании анализа клеточного материала

На сегодняшний день есть глюкометры, которые используют даже дети: настолько они просты в эксплуатации и не требуют специальных знаний. Например, бескнопочный глюкометр OneTouch Select Simple или Accu Check. Существуют устройства, которые передают информацию об опасных отклонениях в показателях пациента врачам. Они даже впрыскивают инсулин в кровь при необходимости. Такая система, например, разработана американской компанией Medtronic Inc.

Технологии контроля и связи с докторами применимы и для пожилых больных с соответствующими заболеваниями — например, болезнью Альцгеймера. В прошлом году Cisco Jasper и Jupl совместно создали систему мобильного оповещения mPERS для повышения безопасности и поддержания здорового образа жизни пожилых людей. В случае возникновения опасности, например, скачка давления, система сообщает об этом лечащему врачу

Печатные зубы и другое

3D-print технологии набирают обороты в медицине. На сегодняшний день самое широкое применение они получили в области производства различных протезов — суставов, пластин, замещающих кости черепа и слуховых аппаратов. Преимущества напечатанных в 3D протезов заключаются в том, что они изготавливаются на основании данных компьютерной томографии пациента, оцифрованной модели (если речь идет об аппаратах для слуха), учитывает анатомические особенности конкретного человека и лучше «приживается» в нем

Известные 3D принтеры — MakerBot и Stratasys — создают прототипы органов, костей и суставов для обучения врачей и последующего моделирования разных видов операций. С помощью этих принтеров создается лабораторное оборудование. Известный кейс — оборудование для производства препаратов для лечения артрита компании Pfizer. Принтер сканирует костные образцы, создавая их точные копии. А затем на них тестируется эффективность лекарств.

Уже печатают зубные импланты. А устанавливает их сверхточный робот. В России этими технологиями занимается компания 3Dоснова. Ученые во всем мире работают над «печатью» человеческих тканей — кожи, костной ткани, органов человека. Когда это станет возможным, лечение очень многих травм будет доступнее.

«Умная» диагностика

Известный пример «умного» диагностического робота — IBM Watson. Компьютер опирается на свою обширную базу данных, сотни тысяч медицинских документов и десятки тысяч историй болезней, и эта база постоянно расширяется и обновляется. IBM Watson используется в больницах Японии, Китая, США, европейских стран и в некоторых российских медицинских учреждениях.

Врач загружает в систему данные по пациенту, компьютер анализирует их, дает результат и свои рекомендации. При возникновении новых симптомов диагноз корректируется. Статистика уже показывает, что робот ставит правильные диагнозы на 40% чаще, чем врачи. Но врач все равно смотрит решение Уотсона, для дополнительного контроля, и принимает окончательное решение.

В России, кстати, тоже есть примеры «умных» диагностических решений. В онкологической лаборатории Unim применяется система, которая проводит исследования биоматериалов. Она опирается на «большие данные», нейросети и междисциплинарный подход.

Платформа компании Digital Pathology проверяет диагноз, поставленный пациенту, получив третье мнение, подтягивая данные по различным показателям со всего мира. К сервису имеют доступ доктора из России, Германии, США, Великобритании и других стран. В России дистанционную онкодиагностику в Unim проводят федеральные и региональные онкологические центры

Топ-10 новых медицинских технологий 2022

Топ-10 новых медицинских технологий 2022 года | Проклинические блоги

Типы контента

  • Блоги
  • Путеводители
  • Видео
  • Инфографика
  • Тематические исследования
  • пресс-релизы

Метки

  • Карьерный совет
  • Подряд/фриланс
  • Цифровое здоровье
  • Вовлечение и удержание сотрудников
  • Совет работодателя
  • Бренд работодателя
  • Новости науки о жизни
  • Проклинические новости
  • Топ 10
  • Работа в сфере подбора персонала
  • Разнообразие на рабочем месте

Последние вакансии

наш консультант управляющий ролью

Дата публикации: 04. 14.2022

Технологии и медицина идут рука об руку уже много лет. Последовательные достижения в области фармацевтики и медицины спасли миллионы жизней и улучшили многие другие. Проходят годы, а новые технологии в здравоохранении продолжают совершенствоваться, и невозможно сказать, какие медицинские достижения появятся дальше. Здесь мы собрали 10 лучших новых медицинских технологий в 2022 году:

1. Технология мРНК

Технология мРНК недавно оказалась в центре внимания, поскольку новые вакцины против Covid-19 используют эту науку. Благодаря своей высокой эффективности, способности к быстрой разработке и потенциалу низких производственных затрат мРНК-вакцины предлагают альтернативу традиционному подходу к вакцинации.

мРНК, или информационная рибонуклеиновая кислота, представляет собой молекулу одноцепочечной РНК, которая несет генетическую информацию, полученную из ДНК. мРНК-вакцины работают, предоставляя клеткам генетический код, позволяющий им производить вирусные белки, после того как белки были созданы, организм может вызывать иммунный ответ. Успех Covid-19мРНК-вакцины дали большой импульс усилиям по разработке других мРНК-вакцин от всего, от рака до вируса Зика.

Потенциал мРНК, как полагают, выходит за рамки только вакцин. мРНК может кодировать практически любой белок, поэтому та же базовая технология может также позволить нам разрабатывать все виды лечения, заставляя организм производить реакцию, подобную лекарственной. Многие препараты на основе белков, такие как антитела, вырабатываемые вне организма, оказались чрезвычайно эффективными, но и чрезвычайно дорогими. Таким образом, используя технологию мРНК, можно сократить время и затраты на разработку, заставив человеческий организм вместо этого работать над производством белков.

2. Виртуальная реальность

Виртуальная реальность существует уже некоторое время. Однако в настоящее время он все чаще используется для лечения широкого спектра психологических заболеваний и состояний, от стресса и беспокойства до деменции и аутизма. Но его возможности не ограничиваются только состоянием психического здоровья, он также используется для эффективного обезболивания путем изменения мыслей и восприятия пациентов в отношении боли.

VR также значительно улучшил процессы обучения медицинских работников, так как позволяет перенестись в тело человека. Это также помогает, когда врачи ставят диагноз, поскольку пациент может виртуально войти в панорамный вид своего тела, что дает ему лучшее понимание своего заболевания или состояния.

Виртуальная реальность по-прежнему обладает огромным нераскрытым потенциалом, но ее основные направления медицинских достижений включают профилактическое здравоохранение, реабилитацию, вспомогательный образ жизни, терапию рака и хирургию.

3. Нейротехнологии

Нейротехнологии обладают безграничным потенциалом для улучшения многих аспектов жизни. Он уже применяется на практике в медицинской и велнес-индустрии, но также имеет много будущих последствий для других контекстов, включая образование, управление рабочим местом, национальную безопасность и даже спорт.

Нейротехнология включает в себя все компоненты, разработанные для понимания работы мозга, визуализации его процессов и даже контроля, восстановления или улучшения его функций. Этими компонентами могут быть компьютеры, электроды или любые другие устройства, которые можно настроить для перехвата электрических импульсов, проходящих через тело.

В здравоохранении нейротехнологии в настоящее время используются для визуализации мозга путем регистрации магнитных полей, создаваемых электрической активностью в мозге, нейростимуляции, стимуляции мозга и нервной системы для воздействия на мозговую активность; и в нейроустройствах — новой технологии, которая отслеживает или регулирует активность мозга с помощью имплантата. Нейроустройства все еще в основном находятся на стадии исследований, но они обладают большим потенциалом для лечения заболеваний головного мозга. Примером этого является Neuralink. Созданная Илоном Маском компания Neuralink разрабатывает устройство, которое будет встроено в человеческий мозг, где оно будет записывать активность мозга и передавать эти данные по беспроводной связи на компьютер. Затем исследователи смогут проанализировать эти результаты и использовать их для электрической стимуляции мозговой активности. В случае успеха его можно будет использовать для лечения болезней мозга, таких как болезни Альцгеймера и Паркинсона. До сих пор Neuralink тестировался на животных, но Илон Маск сказал, что компания надеется начать имплантировать свои чипы людям в 2022 году.0047

Нейротехнология, хотя и очень захватывающая с терапевтической точки зрения, остается очень спорной. Это поднимает вопросы о правах на данные и конфиденциальность. В целом, ее будущие приложения не полностью намечены, но с продолжающимся ростом и идентификацией неврологических расстройств и состояний ожидается, что в ближайшие годы нейротехнологии испытают значительный рост на мировом рынке здравоохранения.

4. Искусственный интеллект

ИИ — одна из самых интересных технологий, которая изменит ландшафт здравоохранения в 2022 г.

ИИ оказывается очень полезным, когда речь идет о раннем выявлении заболеваний и более быстром подтверждении точного диагноза. Например, при лечении рака молочной железы использование ИИ позволяет просматривать маммограммы в 30 раз быстрее с точностью 99%, уменьшая потребность в ненужных биопсиях. ИИ также применяется для наблюдения за сердечными заболеваниями на ранних стадиях, что позволяет медицинским работникам выявлять потенциально опасные для жизни проблемы на более ранних и более поддающихся лечению стадиях. Кроме того, искусственный интеллект также помогает клиницистам создавать более комплексные программы лечения, позволяя пациентам более эффективно управлять своим состоянием.

Исследования и открытие лекарств — одно из последних применений ИИ в науках о жизни. ИИ может оптимизировать процессы поиска лекарств, создавая более эффективные способы обнаружения и перепрофилирования лекарств, значительно сокращая время, необходимое для выхода на рынок нового лекарства, и снижая связанные с этим затраты.

5. 3D-печать

3D-принтеры быстро стали одной из самых популярных технологий на рынке. В сфере здравоохранения эти революционные принтеры можно использовать для создания имплантатов и даже суставов, которые будут использоваться во время операции. Протезы, напечатанные на 3D-принтере, становятся все более популярными, поскольку они полностью изготавливаются на заказ, а цифровые функции позволяют им соответствовать индивидуальным измерениям до миллиметра. Это обеспечивает беспрецедентный уровень комфорта и мобильности.

Использование 3D-печати для предоперационного планирования также набирает обороты. Использование реалистичной копии анатомии реального пациента позволяет хирургам проводить процедуры, которые они раньше не могли выполнять. Возможность планировать сложную операцию и тренироваться перед самой процедурой с использованием моделей, напечатанных на 3D-принтере, может не только повысить показатели успеха, но и сократить время пребывания в операционной и время восстановления.

Использование принтеров позволяет создавать как долговечные, так и растворимые предметы. Например, 3D-печать можно использовать для «печати» таблеток, содержащих несколько лекарств, что поможет пациентам с организацией, синхронизацией и контролем приема нескольких лекарств. Чтобы вывести 3D-печать на новый уровень, биопечать также является новой медицинской технологией. Хотя изначально возможность регенерировать клетки кожи для кожных покровов для пострадавших от ожогов была новаторской, она постепенно уступила место еще более захватывающим возможностям. Ученым удалось создать кровеносные сосуды, синтетические яичники и даже поджелудочную железу. Затем эти искусственные органы вырастают в теле пациента, чтобы заменить первоначальный дефектный орган. Возможность поставлять искусственные органы, которые не отвергаются иммунной системой организма, может быть революционной, спасая миллионы пациентов, которые ежегодно зависят от жизненно важных трансплантатов.

6. Прецизионная медицина

По мере развития медицинских технологий они становятся все более и более персонализированными для отдельных пациентов. Прецизионная медицина учитывает индивидуальную изменчивость генетики, окружающей среды и образа жизни каждого пациента. Например, при использовании прецизионной медицины для лечения пациента с раком лекарство может быть адаптировано к ним на основе их уникального генетического строения. Это персонализированное лекарство гораздо более эффективно, чем другие виды лечения, поскольку оно воздействует на опухоли на основе генетики пациента, вызывая генные мутации и делая их более легко разрушаемыми противораковыми препаратами.

Точная медицина открывает большие возможности в преобразовании будущего здравоохранения. Несмотря на то, что в настоящее время прецизионные лекарства наиболее продвинуты в онкологии, они также имеют более широкое и интересное применение, например, при редких и генетических заболеваниях, а также имеют некоторые перспективы в лечении инфекций. Тем не менее, интеграция точной медицины в здравоохранение будет сложным процессом с проблемами инфраструктуры, неравенства и знаний, которые отрасль должна решить, прежде чем это станет мейнстримом.

7. CRISPR

Сгруппированные регулярно расположенные короткие палиндромные повторы (CRISPR) — это самая передовая технология редактирования генов. Он работает, используя естественные механизмы иммунной системы бактериальных клеток вторгшихся вирусов, которые затем способны «вырезать» инфицированные нити ДНК. Это разрезание ДНК потенциально способно изменить то, как мы лечим болезни. Модифицируя гены, некоторые из самых серьезных угроз для нашего здоровья, такие как рак и ВИЧ, потенциально могут быть преодолены в течение нескольких лет.

CRISPR также перспективен для лечения редких заболеваний. Муковисцидоз (МВ) — редкое наследственное заболевание, поражающее функционирование дыхательной и пищеварительной систем. Ген CF вызывает мутации, изменяющие регуляцию солей через клеточные мембраны, что приводит к сгущению слизи, что вызывает проблемы в легких, поджелудочной железе и других органах. Существует несколько мутаций, вызывающих кистозный фиброз, и в настоящее время проводится несколько клинических испытаний, чтобы выяснить, можно ли использовать CRISPR для исправления этих мутаций. CRISPR также рассматривается как возможный способ лечения серповидно-клеточной анемии, которая также вызвана генетической мутацией. До недавнего времени трансплантация костного мозга была единственным реальным методом лечения пациентов, но генная терапия CRISPR дала пациентам новую надежду.

CRISPR имеет множество потенциальных применений, включая исправление генетических дефектов, лечение и предотвращение распространения болезней, а также улучшение роста и устойчивости сельскохозяйственных культур. Однако, несмотря на свои обещания, эта технология также вызывает этические опасения, в основном связанные с правом человечества «играть в Бога» и опасениями по поводу того, что редактирование генов используется для создания дизайнерских детей.

8. Телемедицина

Телездравоохранение и телемедицина становятся все более востребованными с начала пандемии Covid-19 в 2020 году. Телемедицина относится конкретно к удаленным клиническим услугам, тогда как телемедицина охватывает удаленные неклинические услуги. Поскольку все больше людей переходят на новый способ работы и жизни после пандемии, эта тенденция, вероятно, продолжит набирать обороты, и прогнозируется, что мировой рынок телемедицины вырастет с 68,36 млрд долларов до 218,49 долларов.миллиардов к 2026 году.

Телемедицина предлагает ряд преимуществ как для пациентов, так и для поставщиков медицинских услуг. Это обеспечивает большой комфорт и удобство для пациентов, а также может быть дешевле, поскольку пациентам не нужно нести какие-либо дополнительные расходы, такие как транспортные расходы или уход за детьми. Это также может улучшить доступ для других групп населения, включая пожилых людей, людей, которые географически изолированы, и тех, кто не может покинуть свои дома. Для поставщиков медицинских услуг телемедицина также выгодна, поскольку она снижает накладные расходы, снижает подверженность болезням и инфекциям и позволяет практикующим врачам видеть больше людей, поскольку они могут работать более гибко.

За последние два года телездравоохранение и телемедицина стали более популярными, и в 2022 году технологии для виртуального приема пациентов продолжат свое развитие, выйдя за рамки видеоконференций один на один между врачом и пациентом. Например, в связи с растущим числом пациентов, нуждающихся в поведенческой терапии психических заболеваний, мы можем ожидать появления технологии, которая облегчит групповые занятия, позволяя одновременно поддерживать нескольких пациентов.

9. Носимые медицинские изделия

Спрос на носимые устройства вырос с момента их появления в последние несколько лет, с момента выпуска Bluetooth в 2000 году. Сегодня люди используют носимые устройства, синхронизированные со своим телефоном, чтобы отслеживать все, от шагов, физической подготовки и сердцебиения до режима сна. В условиях старения населения в большинстве развитых стран носимые устройства могут быть эффективным средством профилактики хронических заболеваний, таких как диабет и сердечно-сосудистые заболевания, помогая пациентам контролировать и улучшать свою физическую форму.

Смарт-часы остаются одним из самых популярных носимых устройств в сфере здравоохранения, и все крупные технологические компании, такие как Apple, Google и Samsung, занимают свою долю на рынке. В зависимости от модели они могут записывать режимы сна, артериальное давление, насыщение кислородом и электрокардиограммы. В настоящее время производители работают над интеграцией датчиков для измерения уровня глюкозы в крови в свои смарт-часы, что облегчит жизнь людям, страдающим диабетом. Помимо умных часов, умная одежда, умные кольца и наушники также становятся все более популярными и становятся все более полезными при сборе данных для клинических исследований.

Технологические достижения не останавливаются на устройствах, которые носят на теле, также разрабатываются внутренние и имплантируемые устройства. До сих пор эти микрокомпьютеры, работающие изнутри тела, использовались для помощи таким органам, как сердце и мозг. Внутренние устройства, также называемые умными таблетками, многими считаются следующим этапом после внешних носимых устройств. Они проглатываются в виде твердой капсулы и отправляют измеренные значения, такие как уровень глюкозы, или изображения изнутри тела, чтобы помочь процессам диагностики. Поскольку имплантируемые и инсайдерские устройства только появляются, ожидается, что в ближайшие годы они изменят здравоохранение.

10. Технологии в области психического здоровья

По оценкам, к 2030 году депрессия станет основной причиной бремени болезней во всем мире, что сделает потребность в новых методах лечения более острой, чем когда-либо. За последний год появилось много новых технологий, которые могут помочь удовлетворить текущие потребности пациентов в области психического здоровья.

Все чаще некоторые приложения могут завершать прием пациентов и ставить первоначальный диагноз еще до того, как пациент встретится с врачом, а инструменты на базе ИИ меняют способы оказания психиатрической помощи. Чат-боты с искусственным интеллектом, такие как Woebot, которые могут помочь пациентам практиковать свои стратегии когнитивно-поведенческой терапии (КПТ) в приложениях для смартфонов, и программное обеспечение для распознавания голоса Ellipsis могут анализировать голос и речевые паттерны пациента на наличие предупреждающих признаков эмоционального стресса. В дополнение к этому цифровое отслеживание симптомов имеет решающее значение для оптимизации эффективной психиатрической помощи в будущем. Онлайн-отслеживание симптомов побуждает пациентов ежедневно делиться данными. Затем алгоритм ИИ анализирует эти данные, чтобы выявить закономерности и предупредить поставщиков в режиме реального времени о любых предупреждающих знаках.

Еще одна технология, которую недавно начали использовать для улучшения психического здоровья, — это видеоигры. EndeavorRx, одобренный в 2020 году, является первым и единственным средством лечения видеоигр, одобренным FDA. Игра используется для улучшения концентрации внимания у детей в возрасте 8-12 лет с СДВГ и требует рецепта. В клинических исследованиях 73% участников сообщили о повышении способности концентрировать внимание.

После этого успеха видеоигры должны стать более популярным, доступным и доступным средством лечения целого ряда заболеваний. Недавно было объявлено, что DeepWell Digital Therapeutics запускает первого в своем роде издателя и разработчика видеоигр, посвященного созданию игрового процесса, который может одновременно развлекать и доставлять, улучшать и ускорять лечение множества заболеваний и состояний.

Нашли этот блог интересным? Узнайте больше о последних достижениях в области медицинских технологий, следуя за нами в LinkedIn и подписавшись на наш канал YouTube.

Последние сообщения

Как найти и нанять других лидеров: интервью с Джейн Пападаки

по Наима Морис

16 ноя 22

10 причин задуматься о карьере в области наук о жизни

по Крис Морис

07 ноя 22

Станьте лидером, создав сеть: интервью с техническим директором, доктором Андреасом Ворбергом

по Наима Морис

02 ноя 22

Справочник: Как стать членом правления

по Проклинический исполнительный

10 окт 22

Полевая группа биотехнологов по редким заболеваниям для запуска продукта, Германия

по Проклинический персонал

27 сен 22

Кто входит в 10 крупнейших компаний мира по производству медицинского оборудования в 2022 году?

по Ханна Берк

06 сен 22

Proclinical расширяет свое присутствие в США, открывая новый офис в Остине, штат Техас,

по Ханна Берк

01 авг 22

Кто входит в топ-10 фармацевтических компаний мира (2022 г.

)?

по Ханна Берк

24 июня 22

Рабочая тетрадь для подготовки к собеседованию

по Проклинический персонал

23 июня 22

Proclinical продолжает быстрое расширение, открывая новый офис в Кардиффе

по Ханна Берк

07 22 июня

Последние вакансии

Закрыть

Работа

Поиск

Закрыть

  • Проклинические кадры
  • Проклинический консалтинг
  • Проклинический Исполнительный
  • Проклиническое участие
  • Вакансии
  • Наши услуги
  • Разместить вакансию
  • Информация и советы
  • Познакомьтесь с командой

Мой профиль

Как технологии повлияли на медицину?

Индустрия здоровья и медицины сегодня уже не та, что была десять лет назад. Это изменилось из-за медицинского прогресса, который стал возможен благодаря техническому прогрессу. Медицина не смогла бы совершать такие открытия, как сегодня, если бы не технологии. Каждый день мы слышим о новых технологических прорывах и инновациях. Эти технологические достижения захватили мир и ведут его к большим изменениям.

Влияние технологий на медицину огромно. Используя технологии, медицинская сфера может делать открытия в отношении лечения, сбора данных, исследований симптомов и заболеваний, исследований в области лечения, устройств, помогающих человеку (таких как слуховые и голосовые устройства). Технологии сделали медицинскую сферу очень доступной для людей. С помощью технологий специалисты в области медицины и здравоохранения могут лучше заботиться о пациентах и ​​лучше лечить болезни.

Это лишь некоторые положительные аспекты влияния технологий на отрасли здравоохранения. Тем не менее, нам есть что рассказать вам о том, насколько технологии действительно помогли в области медицины:

Медицинские приложения

Сегодня у каждого есть смартфон, и самое лучшее в любом смартфоне — это его приложения. Что лучше, так это медицинские приложения, которые можно загрузить на любой смартфон через определенные магазины. Сегодня мы можем следить за своим здоровьем, не спеша к врачу из-за каждого мелкого неудобства через наши телефоны. Вы можете проверить потребление калорий, ежедневные шаги, частоту сердечных сокращений или поговорить с врачом через приложение. Вы даже можете проверить свои симптомы, чтобы узнать о своей болезни.

Дистанционное наблюдение за телом

Некоторые пациенты не могут ходить в течение длительного времени, и регулярно посещать больницу для них очень сложно. Именно по этой причине медицинская наука с помощью техники создала устройство дистанционного наблюдения. Это устройство экономит много энергии, времени и денег. С помощью этого устройства пациент может поговорить со своим врачом о любой проблеме, с которой он сталкивается, будь то проблема высокого кровяного давления или низкого уровня глюкозы.

Медицинские исследования:

Технологии сильно изменили то, как работают медицинские науки. Согласно https://cpoe.org/, в прошлом на завершение медицинских исследований и экспериментов уходили годы, но теперь, благодаря технологиям, эти исследования и эксперименты проводятся в течение месяцев или даже недель. Именно с помощью технологий медицинские эксперты могут ускорить процесс и сделать хорошие вспышки в истории болезни. Это было доказано, когда вспышка лихорадки Эбола должна была произойти, и медицинские эксперты в кратчайшие сроки придумали против нее вакцину.

Сбор данных:

Сбор данных – одно из самых важных и необходимых дел в любой области медицины. Вся индустрия здравоохранения полагается на данные, потому что без данных не будет лекарства от любого типа болезни. Данные нужны, чтобы проанализировать любую ситуацию и болезнь, а затем найти возможное лекарство от нее. Данные о болезни, а также о пациентах необходимы, потому что каждый пациент имеет разную автономию. Каждому пациенту требуются разные лекарства, так как не каждое лекарство подходит для каждого пациента.

3D-печать: 

С помощью 3D-печати можно печатать искусственные кости, конечности и органы, которые можно вставлять в тела пациентов, которые в них нуждаются. 3D-принтеры также произвели революцию в протезировании; они сделали части тела чрезвычайно реалистичными и очень дешевыми. Эти 3D-принтеры предназначены не только для печати частей тела, но и для врачей, которые хотят лучше понять человеческое тело. Хирурги и врачи могут проводить операции и операции на искусственно напечатанных телах, прежде чем оперировать настоящих людей.

Технологии делают медицину лучше с каждым днем ​​и тем самым улучшают качество нашей жизни. В этот день мы можем сказать, что врачи, медсестры и все другие медицинские работники могут лечить пациентов намного лучше, чем раньше. Они могут собрать историю пациента за считанные секунды, а также рассказать пациентам об их болезнях за считанные секунды. Технологии сделали медицинские науки более точными и доступными. Это также оптимизировало лабораторные результаты и сделало процесс быстрым и точным.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *